Last Modified: 5-3-2010	6.4 C	From: 200904		
Model Year: 2010	Model: Prius Doc ID: RM000000MD01IX			

Title: HYBRID / BATTERY CONTROL: HYBRID CONTROL SYSTEM: P0AA6-526,P0AA6-611,P0AA6-612,P0AA6-613,P0AA6-614: Hybrid Battery Voltage System Isolation Fault (2010 Prius)

DTC	P0AA6- 526	Hybrid Battery Voltage System Isolation Fault
-----	---------------	---

DTC	P0AA6- 611	Hybrid Battery Voltage System Isolation Fault
-----	---------------	---

	DTC	P0AA6- 612	Hybrid Battery Voltage System Isolation Fault
Į			

DTC	P0AA6- 613	Hybrid Battery Voltage System Isolation Fault
DTC 613	613	Hybrid Battery Voltage System Isolation Fault

DTC	P0AA6- 614	Hybrid Battery Voltage System Isolation Fault

DESCRIPTION

The power management control ECU monitors the battery smart unit and detects insulation malfunctions in the high-voltage system.

DTC NO.	INF CODE	DTC DETECTION CONDITION	TROUBLE AREA
POAA6	526(*1)	Insulation resistance between the high-voltage circuit and the body has decreased.	 Hybrid vehicle transaxle assembly Motor cable Generator cable Inverter with converter assembly Frame wire No. 2 engine wire Hybrid battery junction block Compressor with motor assembly HV battery Battery smart unit

DTC NO.	INF CODE	DTC DETECTION CONDITION	TROUBLE AREA
P0AA6	611	Insulation resistance of the with motor compressor assembly has decreased.	Compressor with motor assembly
POAA6	612	Insulation resistance of the HV battery area has decreased.	 Hybrid battery junction block Battery smart unit HV battery
P0AA6	613	Insulation resistance of the transaxle area has decreased.	 Hybrid vehicle transaxle assembly Motor cable Generator cable Inverter with converter assembly
P0AA6	614	Insulation resistance of the high-voltage DC area has decreased.	 Inverter with converter assembly Frame wire Compressor with motor assembly No. 2 engine wire Hybrid battery junction block Hybrid vehicle transaxle assembly Motor cable Generator cable

HINT:

- *1: INF code 526 is stored together with POAA6.
- If DTC P0AA6 is stored, the vehicle cannot start.
- When measuring insulation resistance using a megohmmeter, measure the resistance while jiggling the high voltage wire harness.

WIRING DIAGRAM

SYSTEM DESCRIPTION

HINT:

If a decrease in insulation resistance cannot be confirmed using a megohmmeter, check the Short Wave Highest Val in the Data List.

1. Characteristics of Short Wave Highest Value

- (a) The Data List item Short Wave Highest Val and insulation resistance have the relationship shown in the table below. Short Wave Highest Val decreases with a decrease in insulation resistance. However, in some cases, even though the insulation resistance of the vehicle is normal, Short Wave Highest Val may decrease. Therefore, check Short Wave Highest Val while considering the following.
 - Do not check until approximately 1 minute has passed after the power switch is turned on (IG) (*1).
 - Do not check when there is a difference between the system voltages (HV battery voltage, VL-Voltage before boosting, and VH-Voltage after boosting) (*2).

SHORT WAVE HIGHEST VALUE	TROUBLE AREA
Neither condition (*1) nor (*2) is met and Short Wave Highest Val is approximately 0 V	Since the insulation resistance is close to 0 Ω , there is a strong possibility of interference with a metal object.
Neither condition (*1) nor (*2) is met and Short Wave Highest Val is between 0 and 5 V	Since the insulation resistance is several hundred kiloohms, there is a strong possibility of the presence of fluid such as coolant.

2. How to Determine Part with Insulation Malfunction

- (a) Jiggle the high-voltage wire harness to check if the resistance to body ground changes with the position of the wire harness or force applied.
- (b) Repeat rotating and stopping of the MG1, MG2 and compressor with motor. Check that the Short Wave Highest Val does not decrease (for example if the motor stops with foreign matter forming a leak path) when the motor stops, or that the Short Wave Highest Val does not return to normal (for example if foreign matter moves away from the leak path) when the motor rotates.
- (c) Increase the temperature of MG1and MG2. Check if the Short Wave Highest Val decreases with the temperature increase.

INSPECTION PROCEDURE

CAUTION:

- When troubleshooting POAA6, be sure to wrap the tools with electrical tape. (It is very dangerous if high voltage is shorted to ground through the tools.)
- Before inspecting the high-voltage system or disconnecting the low voltage connector of the inverter with converter assembly, take safety precautions such as wearing insulated gloves and removing the service plug grip to prevent electrical shocks. After removing the service plug grip, put it in your pocket to prevent other technicians from accidentally reconnecting it while you are working on the high-voltage system.
- After disconnecting the service plug grip, wait for at least 10 minutes before touching any of the high-voltage connectors or terminals. After waiting for 10 minutes, check the voltage at the terminals in the inspection point in the inverter with converter assembly. The voltage should be 0 V before beginning work.

HINT:

- Waiting for at least 10 minutes is required to discharge the high-voltage capacitor inside the inverter with converter assembly.
- When measuring insulation resistance using a megohmmeter, set the megohmmeter to 500 V.

PROCEDURE

1.	CHECK DTC OUTPUT (HV)

- (a) Connect the Techstream to the DLC3.
- (b) Turn the power switch on (IG).
- (c) Enter the following menus: Powertrain / Hybrid Control / Trouble Codes.
- (d) Check if DTCs are output.

Result:

RESULT	PROCEED TO
P0AA6 only is output.	A
P0AA6 and P0A1D (power management control ECU malfunction) are output.	В
P0AA6 and P0AA7 (malfunction in the battery smart unit) are output.	C
P0AA6 and P0A1F (battery ECU malfunction) are output.	D

(e) Turn the power switch off.

- D GO TO DTC CHART (POAFC)
- C GO TO DTC CHART (P0AA7)
- B GO TO DTC CHART (P0A1D)

2. CHECK INFORMATION CODE

(a) Enter the following menus: Powertrain / Hybrid Control / Trouble Codes.

(b) Access the freeze frame data of DTC P0AA6 and read the INF code.

NOTICE:

INF codes 611, 612, 613 and 614 are not stored at the same time with INF code 526. If INF code 526 only is output, turn the power switch off and wait 30 seconds to determine the malfunctioning area. Then, turn the power switch on (IG) and read the INF code again.

Result:

RESULT	PROCEED TO	
526 (decrease in the insulation resistance of the high- voltage circuit) only is output	A	
526 and 611 (decrease in the insulation resistance of the air conditioning area) are output	Refer to the troubleshooting procedures for P0AA6-611 (Heater and air conditioning system)	
526 and 612 (decrease in the insulation resistance of the battery area) are output	В	
526 and 613 (decrease in the insulation resistance of the transaxle area) are output	С	
526 and 614 (decrease in the insulation resistance of the high-voltage DC area) are output	D	

C CHECK INVERTER WITH CONVERTER ASSEMBLY

3.

CHECK HYBRID VEHICLE TRANSAXLE ASSEMBLY (MOTOR CABLE)

CAUTION:

Be sure to wear insulated gloves.

- (a) Turn the power switch off.
- (b) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(c) Remove the inverter terminal cover from the inverter with converter assembly.

HINT:

Make sure that no foreign objects have entered or contaminated the inverter with converter assembly.

(d) Disconnect the motor cable e1 and generator cable f1 from the inverter with converter assembly.

(e) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH	SPECIFIED
	CONDITION	CONDITION
·		

e1-3 (V) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
e1-2 (U) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
e1-1 (W) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher

Text in Illustration

*1	Motor Cable
*2	Shielded Wire Ground

NG CHECK MOTOR CABLE

4.	CHECK HYBRID VEHICLE TRANSAXLE ASSEMBLY (GENERATOR CABLE)

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
f1-3 (V) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
f1-2 (U) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
f1-1 (W) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher

Text in Illustration

*1	Generator Cable
*2	Shielded Wire Ground

NG CHECK GENERATOR CABLE

OK

5. CHECK NO. 2 ENGINE WIRE

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the No. 2 engine wire (air conditioning harness) E2 from the inverter with converter assembly.

HINT:

Make sure that no foreign objects have entered or contaminated the connector of the No. 2 engine wire (air conditioning harness) E2.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
E2-1 (ACPB) - Body ground and shielded wire ground	Power switch off	3 M Ω or higher
E2-2 (ACPE) - Body ground and shielded wire ground	Power switch off	3 M Ω or higher

Text in Illustration

	(Air Conditioning Harness)	
*2	Shielded Wire Ground	

NG CHECK NO. 2 ENGINE WIRE

ОК

6.	CHECK INVERTER WITH CONVERTER ASSEMBLY
----	--

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the frame wire T1 from the inverter with converter assembly.

HINT:

Make sure that no foreign objects have entered or contaminated the connector of the frame wire T1.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
High voltage terminal - Body ground	Power switch off	1 M Ω or higher

HINT:

Perform this inspection with the motor cable, generator cable and No. 2 engine wire (air conditioning harness) disconnected from the inverter with converter assembly.

7. CHECK FRAME WIRE

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
T1-1 (CEI) - Body ground	Power switch off	$10 \ M\Omega$ or higher
T1-2 (CBI) - Body ground	Power switch off	$10 \ M\Omega$ or higher

Text in Illustration

*1 Frame Wire	
---------------	--

NG CHECK FRAME WIRE

8. CHECK HV BATTERY AREA

CAUTION:

Be sure to wear insulated gloves.

(a) Turn the power switch off.

(b) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(c) Disconnect connector j1 from the battery smart unit

HINT:

For the removal and installation procedures related to the battery smart unit connectors,

(d) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
1 - Body ground	Power switch off	$10 \ M\Omega$ or higher
2 - Body ground	Power switch off	$10 \ M\Omega$ or higher

NG CHECK HYBRID BATTERY JUNCTION BLOCK

OK REPLACE BATTERY SMART UNIT

9. CHECK INVERTER WITH CONVERTER ASSEMBLY

CAUTION:

Be sure to wear insulated gloves.

- (a) Turn the power switch off.
- (b) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(c) Remove the inverter terminal cover from the inverter with converter assembly.

HINT:

Make sure that no foreign objects have entered or contaminated the inverter with converter assembly.

(d) Disconnect the motor cable e1 and generator cable f1 from the inverter with converter assembly.

(e) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
High voltage terminal - Body ground	Power switch off	1 M Ω or higher

Result:

RESULT	PROCEED TO	
NG	A	
ОК	В	

B CHECK MOTOR CABLE

A > REPLACE INVERTER WITH CONVERTER ASSEMBLY

CAUTION:

Be sure to wear insulated gloves.

- (a) Turn the power switch off.
- (b) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(c) Remove the inverter terminal cover from the inverter with converter assembly.

HINT:

Make sure that no foreign objects have entered or contaminated the inverter with converter assembly.

- (d) Disconnect the motor cable e1 and generator cable f1 from the inverter with converter assembly.
- (e) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
e1-3 (V) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
e1-2 (U) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
e1-1 (W) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher

Text in Illustration

*1	Motor Cable
*2	Shielded Wire Ground

11. CHECK HYBRID VEHICLE TRANSAXLE ASSEMBLY (GENERATOR CABLE)

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
f1-3 (V) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
f1-2 (U) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
f1-1 (W) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher

Text in Illustration

*1	Generator Cable
*2	Shielded Wire Ground

NG CHECK GENERATOR CABLE

OK

CAUTION:

Be sure to wear insulated gloves.

- (a) Turn the power switch off.
- (b) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(c) Disconnect the frame wire T1 from the inverter with converter assembly.

HINT:

Make sure that no foreign objects have entered or contaminated the connector of the frame wire T1.

(d) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
T1-1 (CEI) - Body ground	Power switch off	$10 \ M\Omega$ or higher
T1-2 (CBI) - Body ground	Power switch off	$10 \ M\Omega$ or higher

Text in Illustration

*1 Frame Wire	*1
---------------	----

NG CHECK FRAME WIRE

ОК

13. CHECK NO. 2 ENGINE WIRE

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

- (b) Disconnect the No. 2 engine wire (air conditioning harness) E2 from the inverter with converter assembly.
- (c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH	SPECIFIED
	CONDITION	CONDITION
E2-1 (ACPB) - Body ground and shielded wire ground	Power switch off	3 M Ω or higher
E2-2 (ACPE) - Body ground and shielded wire ground	Power switch off	3 M Ω or higher

Text in Illustration

*1	No. 2 Engine Wire
	(Air Conditioning Harness)
*2	Shielded Wire Ground

NG CHECK NO. 2 ENGINE WIRE

OK REPLACE INVERTER WITH CONVERTER ASSEMBLY

14. CHECK NO. 2 ENGINE WIRE

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the No. 2 engine wire (air conditioning harness) E1 from the compressor with motor assembly.

Text in Illustration

*1	Green Lock
----	------------

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
E2-1 (ACPB) - Body ground and shielded wire ground	Power switch off	10 M Ω or higher
E2-2 (ACPE) - Body ground and shielded wire ground	Power switch off	10 M Ω or higher

Text in Illustration

*1	No. 2 Engine Wire
	(Air Conditioning Harness)
*2	Shielded Wire Ground

NG > REPLACE NO. 2 ENGINE WIRE

OK AIR CONDITIONING SYSTEM (P0AA6-611)

15. CHECK FRAME WIRE

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the frame wire T4 and T3 from the hybrid battery junction block.

HINT:

For the removal and installation procedures related to the frame wire,

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
T4-1 (CBI) - Body ground and shielded wire ground	Power switch off	10 M Ω or higher
T3-1 (CEI) - Body ground and shielded wire ground	Power switch off	10 M Ω or higher

NG REPLACE FRAME WIRE

OK REPLACE HYBRID BATTERY JUNCTION BLOCK

16.

CHECK HYBRID BATTERY JUNCTION BLOCK

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the high voltage cable connector of the HV battery h2 and k2 from the hybrid battery junction block.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
k2-1 - Hybrid Battery Carrier Panel	Power switch off	10 M Ω or higher
h2-1 - Hybrid Battery Carrier Panel	Power switch off	10 M Ω or higher

NG PREPLACE HYBRID BATTERY JUNCTION BLOCK

OK > REPLACE HV BATTERY

17.	CHECK MOTOR CABLE

CAUTION:

11

Be sure to wear insulated gloves.

- (a) Turn the power switch off.
- (b) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(c) Disconnect the motor cable from the hybrid vehicle transaxle assembly .

(d) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
e1-3 (V) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
e1-2 (U) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
e1-1 (W) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher

Text in Illustration

*1	Motor Cable
*2	Shielded Wire Ground

NG PREPLACE MOTOR CABLE

OK REPLACE HYBRID VEHICLE TRANSAXLE ASSEMBLY

18.	CHECK GENERATOR CABLE
-----	-----------------------

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the generator cable from the hybrid vehicle transaxle assembly .

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
f1-3 (V) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
f1-2 (U) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
f1-1 (W) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher

Text in Illustration

*1	Generator Cable
*2	Shielded Wire Ground

NG PREPLACE GENERATOR CABLE

OK REPLACE HYBRID VEHICLE TRANSAXLE ASSEMBLY

19.	CHECK MOTOR CABLE
-----	-------------------

CAUTION:

Be sure to wear insulated gloves.

- (a) Turn the power switch off.
- (b) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(c) Disconnect the motor cable from the hybrid vehicle transaxle assembly .

(d) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
e1-3 (V) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
e1-2 (U) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher

e1-1 (W) - Body ground and	Power switch off	100 M Ω or higher
shielded wire ground		

Text in Illustration

*1	Motor Cable
*2	Shielded Wire Ground

NG REPLACE MOTOR CABLE

.

OK

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the generator cable from the hybrid vehicle transaxle assembly .

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

TESTER CONNECTION	SWITCH CONDITION	SPECIFIED CONDITION
f1-3 (V) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
f1-2 (U) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher
f1-1 (W) - Body ground and shielded wire ground	Power switch off	100 M Ω or higher

Text in Illustration

*1	Generator Cable
*2	Shielded Wire Ground

Ľ

OK PREPLACE HYBRID VEHICLE TRANSAXLE ASSEMBLY

Этоуота

